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Abstract-A model for the convective evaporation of nondilute clusters of drops has been developed. The 
critical parameter which controls the different evaporation modes has been identified to be the penetration 
distance of the outer flow into the cluster volume. A dynamic criterion has been developed to differentiate 
between penetration and no penetration. Convective evaporation was modeled using a Reynolds number 
correlation between the evaporation rate with and without convection. Other equations, previously 
developed [Cornbust. Flame 51, 5547 (1983)] for quiescent, nondilute-spray evaporation, have been used 
here as well, with the exception of a new kinetic-evaporation law at the droplet surface and a nonuniform 
interior temperature model which have both been developed here. 

The model is shown to perform well for low penetration distances which are obtained for dense clusters 
in hot environments and low relative velocities between outer gases and cluster. For dense clusters with 
low penetration distances the results of the model predict that for the same initial velocity the evaporation 
time is shorter as the cluster becomes more dilute. For dilute clusters and large penetration distances, the 
opposite was found. Since for large penetration distances the predictive ability of the model deteriorates, 
these last trends are questionable. Furthermore, the evaporation time was found to be a weak function of 
the initial relative velocity and a strong function of the initial drop temperature. The initial surrounding 
gas temperature was found to have a strong influence in the lower temperature regime, 750-1500 K, 
whereas in the higher temperature regime the influence was very weak. The vitiation of the ambient gas by 
fuel vapor was found to have a very small influence upon the evaporation time for rich mixtures when the 
cluster is introduced in a strongly convective, high temperature surroundings. In all cases the results show 
that the interior drop-temperature was transient throughout the drop lifetime, but nonuniformities in the 

temperature persisted up to at most the first third of the total evaporation time. 

1. INTRODUCTION 

THE BEHAVIOR of sprays injected into combustors is 
of great practical interest because of the variety of 
power systems using liquid fuel as a source of energy. 
Typically, the liquid fuel is atomized into droplets in 
a chamber where it mixes with ambient gases and 
burns. The interaction between the spray and the 
ambient gas is complex due to turbulent effects which 
distort the shape of the spray as it moves through the 
chamber and disperse the droplets. Moreover, the 
proximity of the droplets in the spray leads to inter- 
actions between the drops themselves such as colli- 
sions, coalescence, hydrodynamic interactions and 
limitations on the evaporation rate due to local fuel 
vapor accumulation. The coupling of all these 

phenomena yields an extremely complicated physical 
picture that cannot presently be described by a model 
that is computationally reasonable. For this reason, 
the entire problem has traditionally been divided into 
simpler problems that are tractable and that usually 
emphasize a particular aspect of the physical situation 
with the aim of gaining a deeper understanding about 
it. The ultimate goal is to be able to use this under- 
standing for the description of the more complicated 
problem. 

In this paper, interest is focused on the nondilute 
aspect of sprays, and in particular on how it can 

influence droplet heating and evaporation in a con- 
vective flow. An issue that will be addressed here is, 
for example, that of the difference in the convective 
evaporation between a drop, a dilute spray and a 
dense spray for a given initial relative velocity. More- 
over, for a given spray with a specified drop-number 
density, the question of the influence of the initial 
relative velocity between the gas and the spray will be 
considered. This is because it is important to know 
first how much of a reduction in the evaporation time 
can be expected by increasing the relative velocity and 
also to know if asymptotic behavior might be reached 
in the process. Further, the effects of the initial tem- 
perature of the surroundings and the initial tem- 
perature of the drops will be investigated. Finally, it 
will be shown that the initial vitiation by fuel vapor 
of the gas surrounding the spray has a negligible effect 
for rich mixtures, when the spray is introduced into 
a strongly convective, high-temperature surrounding 
gas. 

Section 2 presents the model formulation while 
some equations previously developed are recalled in 
the Appendix. The numerical procedure used to solve 
the model equations is briefly outlined in Section 3. 
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NOMENCLATURE 

a radius of the sphere of influence [cm] VT YIN 
c nondimensional evaporation rate, v 4nR3/3 [cm’] 

-ti/(4np,DR”) W molecular weight of species i [gmol-‘1 

CD drag coefficient R2 
C* defined by equation (17) FF Y&W2 dy+ p, G,, 
c, heat capacity at constant pressure s ‘QI 

[calg-’ K-‘1 
diffusivity [cm2 ss’] 

Y, mass fraction of species i 
D Y r/R” 

effective cluster diameter [cm] 

%L&) W-R:)/3 
Z r/R. 

g(R,, R2) (eciRl -eC’R2) Greek symbols 

RI a constant 

I(& 3 R2, c) 
s 

ec,jy2 dy 
RI 

AC, fitted C,,-C,, for the saturation pressure 
curve [cal gg ’ K-‘1 

L latent heat of evaporation [cal g- ‘1 5 -21n R,(t) 
ti evaporation flux [gem-2 s-‘1 sv v,/ v, 
m mass kl 0 CpTILn 

; 
evaporation rate [g s-‘1 1 conductivity [calcm-' s-’ K-‘1 

total number of drops 7 defined by equation (5) 

n density of drops in the cluster [cm-‘] rIT -p,C,,R(dRldt)l~, 

P pressure [atm] air/fuel mass ratio 

R radius of a drop [cm] z. stoichiometric air/fuel mass ratio 

& universal gas constant P density [g cm-‘] 

[atm2s2cm4g~‘mol~‘K~‘] ? PiPL 

RI universal gas constant [calmol-‘K-‘1 ^I 
P (R:-1)/3+p, 

R* defined by equation (20) *2 
P fi,“/3 

R: universal gas constant V kinematic viscosity [cm2 s-l] 

[atm cm3 mol-’ K-‘1 X defined by equation (21) 

Rl cluster radius [cm] Y equivalence ratio, r$/& 

RI R/R” 

R2 a/R” Subscripts 

> 

radial coordinate [cm] a 
477R2 [cm’] 

at the edge of the sphere of influence 

:P, 
ambient gas 

T temperature [K] normal boiling point 

j% % 

d 

cluster 

[Q,oW-lly2dy+ 6@pOa-l) : droplet 
F fuel 

F2 i’(Qi,- l)C,,/C,, gas 

t, evaporation time (time for R, to decrease :: liquid 

to 0.05) [s] 0 initial 

u velocity [cm s ‘1 P partial 

u, velocity associated with the gases evolved s droplet surface 

through evaporation [cm ss’] sat saturation 

U, relative velocity, (u, -u,) [cm s- ‘1 st stagnation 

& far field flow velocity [cm s-‘1 V vapor. 

vd 4nR3/3 [cm31 

6 (4nnRo3)-l--R:/3 Superscripts 

Vl (4wzR-2)m’ - Rf/3 0 initial. 

The results obtained by solving this system of equa- 2. MODEL FOAhnULATlON 
tions are discussed in Section 4, and finally in Section 
5 the main features of the model are recalled and Figure 1 shows the physical picture studied here. A 
conclusions are presented. All the symbols used are moving spherical cluster of monodisperse, uniformly 
identified in the Nomenclature. distributed, spherical droplets made of single-com- 
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FIG. 1. Physical picture of the cluster of drops in a convective flow. (a) System of coordinates attached 
with the ambient gas. (b) System of coordinates attached with the cluster. 

ponent fuel depicts a collection of drops from a spray 
that is exposed to a convective flow characterized 
by the velocity u,. A real spray is viewed here as a 
multitude of these clusters of drops, but the present 
formulation is restricted to the description of one 
individual cluster. 

The droplets in the cluster are all assumed to move 
with the same velocity, II,. Thus, in the frame of ref- 
erence attached to the center of the cluster, the velocity 
of the flow past the cloud is u, = u,-u,. The equa- 
tions describing evaporation of the cluster are written 
in this frame of reference. 

As in the model of Bellan and Cuffel [ 11, each drop- 
let of the cluster is considered surrounded by a fic- 
titious sphere of influence ; the ensemble of these 

closely-packed spheres and the spaces between them 
is the entire volume of the cluster.The gas surrounding 
the droplets is typically air which might have been 
vitiated. Furthermore, it is assumed that: the gas 
phase is quasi-steady with respect to the liquid phase 
(reasonable for low pressure conditions) ; the drop 
temperature is a function of droplet radius and time 
(justified for very viscous liquids, such as heavy fuel 
oils, where recirculation of the flow inside the drop is 
minimal and the limit of zero Hill vortex strength 

is applicable [2]) ; the temperature is a continuous 
function at the drop surface ; all dependent variables 

are averaged in the spaces between the spheres of 
influence ; the Lewis number of the gas phase is unity ; 
the quantity pD is constant; Crr, C,,, 1, and 1, are 
averaged and constant ; pa is time dependent but uni- 
form ; p, is constant ; the cluster is not exposed to body 
forces ; the Mach number of the gas phase is much 
smaller than unity ; radiative and other heat-loss 
mechanisms are neglected. 

For reasons explained below we adopt the classical 
approach [3, 41 that does not attempt the detailed 
prediction of the how field around each drop when a 
cluster is exposed to a convective flow. Instead, what 
is of interest here is the modification of the value of 
the evaporation rate due to the convective flow as well 

as global features of the ensemble of drops. For this 
reason, we will still use here a model of quiescent 
evaporation and the modification of the evaporation 
rate will be described according to well-known cor- 
relations [4]. 

A. The liquid-phase formulation 
The life history of a droplet of single-component 
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fuel is described entirely by the energy equation 

The appropriate boundary conditions are 

(2) 0 

dT, -4nR’I,z +?xJ. (3) 

Xn order to simplify the numerical solution technique, 
equations (lt(3) are solved in a system of coordinates 
fixed with the regressing droplet surface. These new 
coordinates (z, r) are introduced as follows : 

r 

Z=R(t) 

(5) 

Once nondimensionalized and transformed into this 
new system of coordinates, equations (l)-(3) become 

C is here a nondimensional evaporation rate as 

defined in the Nomenclature. 

B. The kinetic evaporation law 
Evaporation of a substance at a surface is the result 

of the difference between the flux of molecules of the 
substance leaving the surface and that of molecules of 
the same substance striking the surface [5]. This is 
expressed by : 

k = aR2(psat.s -~p.s) (9) 

where 

(10) 

YFV, 1 
P&S = jjy ______ 

F c Yi/WiP”. 
(11) 

In equation (10) we made the implicit ass~lmptions 

that the gas is perfect, away from the critical point, 
and that AC, is a constant. 

When nondimensionalized, the kinetic evaporation 
rate equation becomes 

C= --aRT$s{(l atm)exp[y(& - &) 

0,” 

(12) 

Equation (12) is the correct form of the evaporation 
law which is often simplified to yield the Clausius- 
Clapeyron relationship. That relationship has been 

extensively used despite the fact that it has been shown 
to lead sometimes to inconsistencies and inaccuracies 

f51. 

C. The gas-phase fomulution 
The set of equations describing the behavior of 

the mass fractions, temperature, density and pressure 
during evaporation in quiescent surroundings has 
been developed in ref. [l]. To summarize it, two sets 
of equations were formulated. The first set described 
evaporation of an individual droplet inside its own 
sphere of influence. The second set were global con- 
servation equations inside the control volume of the 
cluster and they described the behavior of the depen- 
dent variables at the edge of the sphere of influence. 
Thus they were coupled to the first set of equations. 
The Appendix contains the solution of this set of 
equations in terms of the dependent variables. This 
solution is still valid here with the exception of the 
calculation of the evaporation rate, C, which is now 
different due to the existence of the convective flow. 
The model used for calculating C is described next. 

Sprays exposed to convective flows behave 

very differently from quiescent clouds of drops. 
First, the geometry of the entity changes due 
to turbulent-induced flows and recirculation. 

Second, the evaporation rate increases. Both 

the change in geometry and the enhan~ment of 
evaporation are very dificult to model; the main 
concern here is the determination of the eva- 
poration rate. It has been established long ago [3] 
that when an individual drop is exposed to a flow 
past it, its evaporation rate increases and the new 
evaporation rate can be expressed in terms of the 
evaporation rate in quiescent surroundings multiplied 
by a factor containing the Reynolds number. More 
recently, Prakash and Sirignano [2] and Dwyer and 
Sanders [6] have modeled the details of the external 
flow around a droplet and the coupled internal flow 
dynamics inside the droplet for a droplet immersed 
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in a convective flow. However, these results are not 

directly applicable to drops in a nondilute spray 
because the flow around each drop of the spray is 

influenced by the presence of the other drops. Tal et 
al. [7] have mathematically treated the situation of 
flow over three equal and constant-diameter spheres 
equally spaced in one direction and found that a 
remarkable hydrodynamic periodicity evolved begin- 

ning with the first sphere after the inlet-exposed 
sphere. In fact, both the drag coefficient and the Nus- 
selt number tend to stabilize after the second sphere. 
In contrast, the temperature field was found aperiodic 
and had to be resolved for each particular sphere. It 

is difficult to predict how these results might change 
when evaporation and the resulting decrease in 
sphere-size are considered. 

It is obvious that when describing a nondilute clus- 
ter composed of a multitude of droplets it is imprac- 
tical to attempt a detailed description of the exterior 
and interior flow patterns, temperature and mass frac- 
tions around and inside each drop, unless there is 
indeed a common aspect to all of them. Therefore, 
one needs to reconsider the interactions between a 

cluster and the surrounding flow so as to isolate the 
important and relevant aspects. These are taken to be 
as follows : (i) extent of the flow penetration inside the 
cluster volume at each instant in order to assess which 
droplets are aware of the existence of the flow; (ii) 
the magnitude of the instantaneous relative velocity 
between the cluster and the flow ; and (iii) the relation- 
ship between the evaporation rate with and without 
flow. 

To assess whether the interior of the cluster is pen- 
etrated by the outer flow, a comparison between the 
flow of gases yielded by evaporation from the drops 
and the flow of gases coming from the outer flow at 
the cluster surface is made here. This yields a dynamic 
criterion for cluster penetration similar to a static 
criterion previously developed [8]. Based upon the 
results of previous calculations [l], the pressure inside 
the cluster is considered equal to that in the ambient 
flow. Then, at instant t, the cluster will not be pen- 
etrated if 

But 

4 = n;riP,.c 

(13) 

so that the criterion becomes 

Nondimensionalizing, identifying pg,c as pga and 
defining C* as 

(17) 

Equation (26) represents a correlation valid for Rey- 
nolds number up to lo4 [4,9]. Reliable correlations for 
higher Reynolds numbers have not been found. If 
such relations become available, they can easily be 
incorporated into this model. 

the criterion specifies that no flow penetration will When a cluster is not penetrated by the flow around 

occur for 

]Cj > c*. (18) 

Since C* is directly proportional to u,, this is an 
additional reason for calculating u, as a function of t. 
This is done here by solving the momentum equation 
for a sphere moving through a fluid : 

M,d$ = - %d,2p,C,lo,-“,I(“,-“,). (19) 

If complete penetration of the flow occurs, the sphere 

is each individual droplet; however, if there is no 
penetration by the outer flow, the sphere is the entire 
cluster because the flow goes past the cluster. In order 
to have a smooth transition between these two 
extremes, partial penetration is considered as well. 
For this purpose, an effective radius of the sphere is 
defined as 

where 

R* = R+(R-R)min(l,fi) (20) 

x,M- 4 
c* u,-u,’ (21) 

With this formulation, if ]C] > C*, there is no pen- 
etration and R* = R”, as expected. If ]C] < C* there 
is penetration and R * = R,, where R,, is the equivalent 
radius of the stagnation point surface for the solution 
of the incompressible potential flow around a sphere. 
The Jx, rather than x, was chosen in the definition 

of R* in order to introduce the similarity with the 
incompressible potential flow solution for the stag- 
nation point. When ]C] << C* there is complete pen- 
etration and R* = R, as expected. In equation (19) 

and 

d,=2R* (22) 

471 
m, = TpcR*3 

PC = 
m,fm, 

VT 
= Pl~V+Pgu -&I. (24) 

In this manner, all possibilities are described by the 
general momentum equation 

du,_ 
dt 

_ _3’sicou:_ 
8 PC R* 

where 

C D = 0.271 Re’.” (26) 

2R*u 
Re=L. 

VW 
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it, a distinction must be made between the drops of where 
the outer shell whose evaporation is affected by the 
flow and the inner drops whose evaporation is not (35) 
affected by it. Thus the average evaporation rate of 
the cluster is defined as 

c=cRe(3”c~e[(~~-(~)‘] 

The surface boundary condition may be written as 

2~ -(r(<)G(<) atz=] (36) 

R* 3 +C,, 1 -x 
( ) 

(28) where the function G depends on the surface tem- 
perature, normalized radius R,, and evaporation par- 

where 
ameter, C. (The total dependence on the surface tem- 
perature is highly nonlinear. This poses potential 

1 + (I ,“;;;;;l,jy 
1 1 (29) 

numerical stability problems.) The function 0 is rela- 
tively small for cases of interest and is very weakly 

and 
Re, =0 

Re2 = Re 

varying. An expansion in parameter 0 may be made ; 
it was found that this is equivalent to expanding 0, in 

(30) powers of 2’. (Odd powers do not appear due to radial 

(31) 
symmetry.) A four-term truncated series, to order (z6), 
gives adequate numerical accuracy. Let 

Re, = 3. 
V% 4 = c B,(Oz”, with O,, = 8, (z = 1). 

,=o 
In equation (28) the first term on the RHS accounts 
for the evaporation of the drops in the core of the 

Then in terms of 8,, and a function F(t) 

cluster, the second term represents the evaporation of 
the droplets in the outermost shell of the sphere of 
radius R*, whereas the third term accounts for the 
evaporation of the drops in the spherical shell between 
the radius R* and R”, as shown in Fig. 1. The cor- 
relation for CRe, was used extensively [4] and reduces 

B, =;(I -;+G-;(1 -$)F 

to the Ranz-Marshall expression in the limit of very 
large Reynolds numbers. As it will be pointed out in 

iY2=; 
( > 

1 -;CT (5F-crG) 

the discussion of the results, the effective radius R* 

as defined by equation (20) is a good representation 
for dense clusters but becomes less appropriate as the 

B, = +~(5&0G) 

cluster becomes more dilute. 
where 

3. NUMERICAL PROCEDURES 

One of the complications in making calculations 
with the present model, as compared to the previously 
mentioned one [l], is that the drop temperature dis- 
tribution must be found at each time step. Another 
complication is that the kinetic evaporation law, 
along with the equation of state, form a nonlinear 
implicit set of equations for the pressure and 
evaporation rate, C, if egs = Be is assumed. These 

equations must be numerically iterated to solve for 
the pressure and evaporation rate. 

$(e,,+F) = -;(G--F) 

These give a consistent solution, accurate to order 
(a3), in terms of the two unknown functions (Q,, + F) 
and w. 

In order to treat the drop temperature distribution The numerical integration is carried out using the 

equation, the independent variable is changed from GEAR integrator package [lo]. For each integrator 

time to a new time-like variable : step, the following iterative procedure is applied. 

t(t) E -2lnR,(t). (33) 
(i) Predict values of F, G, f&. 

(ii) Solve the equation of state and the kinetic evap- 

The drop heat conduction equation becomes 
oration law by Newton-Raphson iteration for 
the pressure and evaporation rate. 

(iii) Apply the convection correction to the evap- 
oration rate. 

(34) (iv) C orrect the values of F, G, Be. 
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A repeat is made starting at (ii) until convergence 
is obtained. Thus, each step requires a double-loop 
iteration to calculate the surface temperature, evap- 

oration rate, and pressure. 

4. DISCUSSION OF RESULTS 

One of the goals of the present research is to develop 
a self-consistent model of convective spray evap- 
oration that will qualitatively agree with experimental 
observations. For this reason we are interested in the 
extent of the external flow penetration inside the clus- 
ter and how this penetration influences evaporation. 
We are also interested to determine to what extent the 
temperature profile inside each drop of the cluster 
becomes nonuniform during heating and evaporation, 
and finally we want to identify the parameters most 
critically affecting the evaporation. 

All calculations here were performed for drops of 
initial radius R" = 2 x 10m3 cm using n-decane as the 
fuel and air as the ambient gas. Table 1 illustrates 
various thermophysical constants used in the cal- 
culations and Table 2 shows the actual parameters 

Table 1. Parameters and thermophysical properties used in 
the calculations 

I?= lOan 

Gas phase : W, = 142 g mol-’ 
Was = 28.9 g mol-’ 
C,, = 0.241 cal g-K’ 
D" = 0.1 cm2 SC’ 

Liquid phase : p, = 0.734 g crn3 
C,, = 0.523 cal g-’ K-r 

1, = 2.5 x 10m4 cal g-’ K-’ 
p, = 1.35 x lo-* g cm-’ s-’ 
Tbn = 447.1 K 
L,, = 73.92 cal g-’ 

Table 2. Values of the parameters used in the parametric 
study 

V 

u: 
0 

Y (cm s-‘) & 2) Y& 

0.02 sweep 2000 350 0.0 
sweep 200 2000 350 0.0 
sweep 1000 2000 350 0.0 
0.02 1000 sweep 350 0.0 
0.02 1000 2000 sweep 0.0 
0.02 1000 2000 350 sweep 

Sweeps : 
Y (0.005),0.02,0.05,0.10,0.20,1.00,5.00,10.00, 

20.00, 50.00 
u,” (ems-‘) 10,25, 50, 100, 300,750, 1500,200O 

T; (K) 750, 1000, 1500,2000,2500 

T;s (K) 350, 380,410,440 

J%, 0.00, 0.01, 0.05, 0.06, 0.07, 0.10, 0.15, 0.155. 

that were varied during the calculations and the range 
within which they varied. In general, calculations were 
performed for a rich cluster and a high ambient tem- 
perature so as to simulate evaporation of a dense 
cluster of drops immersed in a hot environment result- 
ing from combustion of other clusters previously 

injected. 
The plot in Fig. 2 shows that there are three regions 

where the evaporation time exhibits different be- 
haviors. The first region is that of very dense clusters 
where evaporation is hindered by accumulation of fuel 
vapor in the gas phase so that eventually saturation is 
obtained before complete evaporation. In contrast to 
the other regions, here the evaporation time is defined 
as the time when evaporation stops so that as 4 
increases saturation is obtained faster and thus t, 
decreases. The second region is that of dense clusters 
where evaporation is enhanced as the cluster becomes 
more dilute because there is more coupling between 
the gases and the drops as the cluster becomes more 
penetrated by the gases. The third region is that of the 

I I I I 

T$ = 2OC@K 

5- T$ = 359K 

$?a=o.o;;2&&_ 

2- i Rz’b.6 

n-d cme3 RI-N 
1- R2’6.0 

(Saturation before 

010-Z 

complete,evaporation) , I I 

10-l 100 101 102 103 
4 

FIG. 2. Evaporation time versus the mixture ratio for two initial relative velocities between the cluster and 
the gases. 



132 J. BELLAN and K. HARSTAD 

dilute and very dilute clusters where it is predicted that 
the evaporation time increases as the cluster becomes 
more dilute. These last results are questionable and 
must await further confirmation since as it will be 
shown below the model becomes invalid at large pen- 
etration distances. For the same mixture ratio, a 
larger initial relative velocity will accelerate evap- 
oration, as expected. (It should be pointed out that 
the cases of the very dilute clusters exposed to a large 
initial relative velocity might be somewhat unrealistic 
since it is difficult to imagine that a cluster containing 
so little mass can sustain significant relative velocities.) 

The above results are qualitatively correct with the 
understanding that the predictive ability of the model 

deteriorates as the cluster is more dilute or becomes 
more penetrated by the outer flow. This can be seen 
in Fig. 3 where a nondimensional expression related 
to the penetration is plotted vs R,. For very dense 
clusters there is initially little or no penetration, but 
as evaporation proceeds u, decreases faster than u, 
and so penetration becomes more important. When 
the cluster is substantially penetrated, the present 
model becomes invalid because for this condition the 
Reynolds number should be based upon another 

0 0.10.20.30.40.50.60.70.80.91.0 

FIG. 3. Normalized residual penetration distance YS nor- 
malized instantaneous droplet radius for various equivalence 
ratios (rich : Y < 1; lean : Y > 1). The penetration distance 

is defined as I?(1 -R*/d). 

length than the penetration distance as defined in equa- 
tion (20). The same comment is valid for the character- 
istic distances included in the definitions of equations 
(22)-(24). Since the solution of the momentum 
equation is a function of these definitions, it is 
expected that the prediction of the relative velocity as 
a function of time is also somewhat in error. The 

choice of the appropriate characteristic distance to be 
used in this relationship is not obvious and additional 
modeling is needed to remove this difficulty. Since for 
dense or dilute clusters the penetration distance seems 
non-negligible the development of a more accurate 
model seems necessary. It is however expected that 
the trends presented here are still correct. although 
for example the slope of the curves presented in Fig. 
2 will change. In order to compare the present results 
with the classical single-droplet-in-quiescent-environ- 
ment solution we display in Fig. 4 a plot of R: vs time 
for various values of Y. As expected, none of these 
curves is a straight line, except in the one case where 
the cluster is so dense as to lead to saturation before 
complete evaporation. 

To ensure that our results are as correct as possible, 
the next parametric studies were all made for rather 
dense clusters where the convective evaporation 
model performs best. 

Figure 5 shows the influence of u; upon the evap- 
oration time of the cluster. The important observation 
here is that the evaporation time seems to be only a 
weak function of u,“. For example, increasing u: by a 
factor of 10 from 10 to 100 cm s-’ decreases t, by only 
26% and increasing u,” by a further factor of 20 to 
2000 cm SC’ decreases t, by only 45%. The practical 
conclusion is that for clusters, as distinct from isolated 
drops, large increases in the initial relative velocity 
must be planned before significant reductions in the 
evaporation time can be expected. 

In contrast, the results of Fig. 6 show that, in the 
lower temperature regime, the initial ambient tem- 
perature plays an important role in controlling the 
evaporation time of the cluster. Beyond 1500 K, little 

uo = 200 cmlsec 
r 

1;s =2Olo0K, l$ = 350oK, Yl,a = 0.0 

t x 102, SEC 

FIG. 4. Variation of the normalized square radius with time 
for various equivalence ratios (rich : Y < I : lean : Y > I). 
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6 = 0.314 - 

To 
ga = 2OOffK 

ro = 3500K 

via = 0.0 

I I I 
100 1000 loo00 

UO r 

FIG. 5. Evaporation time vs the initial relative velocity 
between the cluster and the gas. 

is gained by further increasing the initial temperature 
of the surrounding gases. The results obtained by 

varying Tia were also used to study the drop-tem- 
perature nonuniformities during evaporation. This is 

because the variation of T& - Tis allowed the obser- 
vation of steeper gradients developing as this tem- 
perature difference increased. Plotted in Fig. 7 is the 
time-history of the nondimensional drop temperature 
vs the nondimensional drop radius for the largest 
difference T& - Ti, where most nonuniformities 

developed. Initially, the drops are introduced at con- 
stant temperature but very quickly a gradient develops 
due to the heat demanded for evaporation. [This is 
to say that in the very initial period, the boundary 
condition expressed by equation (3) controls the 
dynamics of evaporation.] Simultaneously, the ambi- 
ent temperature decreases substantially because heat 
is transported to the drop’s surface to promote evap- 
oration. It is to be noticed that by the time R, = 0.8 
the ambient temperature has decreased by factor of 
2.2. This is explained by the fact that when R, = 0.8, 
49% of the drop’s mass has already evaporated. The 
results presented in Fig. 7 also show that by the time 

7. 

6. 

8 1/1 

?% 5. 

> 

4. 

3. 1 too 

I I I 

1 
T9 = 3500K 

y?Va = 0.0 

u; = lo3 cmlsec 

1500 
To OK 

gav 

4 
2txG 2500 

FIG. 6. Evaporation time vs the initial surrounding gas 
temperature. 
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FIG. 7. Nondimensional internal drop temperature profile at 
various residual drop sizes. 

R, has reached 0.8 the internal temperature profile 
has become uniform. In terms of time spent in a non- 
uniform temperature configuration, the drop has 
spent a third of its lifetime in this mode. Thus, accord- 

ing to the table in Fig. 7, two thirds of the droplet 
lifetime will be spent in a uniform temperature con- 
figuration during which about 50% of its mass will be 
evaporated. These results are in partial disagreement 
with those obtained by Prakash and Sirignano [2] 
for individual single-component fuel drops for which 
drop-temperature nonuniformities persisted up to the 
end of the drop’s life. It is unclear at this point if 
this is due to their more sophisticated interior-droplet 
model or to the fact that they study only individual 
drops. The viscosity of the fuel here is large enough 
to make the zero-Hill-vortex-strength limit acceptable 

and thus the present model seems appropriate. In fact, 
a calculation of the ratio of the characteristic time 
for circulation to the characteristic time for heat-up, 

[(3L,/pICp,)]/(~,/pI) shows that this ratio is 3.53 x lo-’ 
(the values of the constants are given in Table I), and 
thus the heating time is indeed independent of the 
circulation time which makes the model and the 
results self-consistent. In agreement with ref. [2] we 
found that unsteadiness in the liquid phase persisted 
to the end of the drop’s lifetime. 

The strong dependence of t, upon T& is shown in 
Fig. 8, where it is seen that about 20% increase in the 
initial drop temperature results in about 34% 
decreases in the evaporation time. For an initial tem- 
perature close to the normal boiling point the drops 
are initially so hot that evaporative cooling is observed 
up to R, = 0.8 (23% of the droplet lifetime) after 
which heating occurs again. 

Figure 9 shows that t, has a very weak dependence 
upon YgV, for rich mixtures, merely because the drop 
number density changes very slowly with YF,,. For 
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these rich mixtures Yg,,, can be increased as much as 

to obtain saturation at the initial condition and it is 
found that in the entire regime t, depends linearly 

upon Yg,,. 

5. SUMMARY AND CONCLUSIONS 

The model of convective droplet-cluster evap- 

oration developed herein is based upon the concept 

of a penetration distance defined as the distance that 

the outer flow penetrates into the cluster volume. If 

there is no penetration, the outer flow bypasses the 

cluster of drops and only the drops at the periphery 

of the cluster feel the effect of the convective flow. If 

the flow penetrates completely, each drop feels the 
effect of this outer flow. Partial penetration was also 

considered, and included in this model is an expression 
developed by similarity with the incompressible 

potential flow around a sphere. In all situations, the 
decrease in the relative velocity between the cluster 

and the gases was calculated using a momentum equ- 

FIG. 9. Evaporation time vs the initial fuel vapor mass 
fraction at rich overall conditions, 

ation for the cluster that takes drag into account. The 

evaporation enhancement due to the convective flow 
was modeled using a correlation based upon the 
Reynolds number. 

Results obtained with this model show that the 
theory is valid for very dense and dense clusters when 
the penetration distance is small. As the penetration 
distance increases, the model is no longer self-con- 
sistent and additional considerations must be raised 
to find an alternate to the definition of the penetration 
distance as done here. However, the trends of the 
results are still expected to be correct especially since 
most of the situations considered here were those of 
dense clusters in hot environments. 

Parametric variations have shown that there are 
three regions where the evaporation time exhibits a 
different behavior. In the very dense cluster regime 
where saturation is obtained before complete evap- 
oration, the evaporation time (defined here as the 
time when evaporation stops) decreases as the cluster 
becomes denser. In the dense cluster region where 
no saturation is encountered, the evaporation time 
decreases as the cluster becomes more dilute. Finally 
in the dilute and very dilute regimes the evaporation 
time increases as the cluster becomes more dilute. 
These last results must await further confirmation 
since the predictive ability of the model is questionable 
in these regimes. For the same equivalence ratio, the 
dependence of the evaporation time (defined as the 
time to reach R, = 0.05) upon u,” was found to be 
weak over the range l&2000 cm s-l. In contrast, for 
ambient temperatures in the range 750-1500 K, the 
evaporation time was found to be a strong function 
of T&, whereas further increase in the temperature of 
the surroundings proved fruitless in decreasing the 
evaporation time. The initial drop temperature was 
shown to strongly affect evaporation, and close to the 
normal boiling point evaporative cooling was 
observed. For dense clusters, the initial vitiation of 
the surrounding gases affected the evaporation very 
little except when saturation was obtained, and then 
no evaporation occurred. 

In all situations encountered here the internal tem- 
perature of the drops exhibited an unsteady variation 
throughout the drop’s lifetime. However, nonuniform 
temperature profiles were observed only during the 
initial part of the drop’s lifetime ; the largest non- 
uniformities persisted for a third of the drop’s lifetime 
corresponding to about 50% of mass evaporated. 

All the results presented here are qualitative and 
further modeling is needed to improve the predictive 
ability of this droplet-cluster model. 
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APPENDIX 

The equations that yield the gas-phase solution are : 

Y,,, = (Y,,,-l)eC’R;‘-R;‘)+l 642) 

(A3) 

E= 1-R; (A4) 

p’+&;’ 

Pg. =f(R,,R,)+ 9, (A5) 

YF,, = 

g(R,, &, C)( FF + #I+ YFvrPsakC’R’f (R,, R,) - QR,, RZ, C)l 

i&[eC’~.f(RI, &-I(&. R?, C)+ PIgO?,, R,, Cl1 

646) 

f&t = {g(R,,R,,C)[j“+~'2-(B,,-l)i,2R:C,,/C,, 

+~,,f(R,,R,)+~,,P,l+B,,~,,[eC’Rlf(R,,R,) 

-I(R,, R,, C)lI/{i)p.[eC’Rlf (RI, R2) 

--I(R,,R~,C)+PI~(R,,R,,C)I} (A7) 

x [(Y,,, eGRI - Y,,, eCJR2)(Oga eC’RI 

- B,, eCR2) f (R,, R2) + [(Y,,, eCtRI 

- YFvS eCR~)(Bpr - 0,) + ( Y,,, - Yd 

x (8,, eC.RI - or< eGR?)]Z(Rlr RI, 0 

+ (Y,v, - Y~va)&,r - Q,aMR,. R,, 2C)l 

1 1 

+W,,g(&,&,C) 
[(O,, eCIRI -B,, et/R?) 

xf(R,,R,)+(H,,-B,,)I(R,.R,,C)l 

ANALYSE DE L’EVAPORATION CONVECTIVE D’ENSEMBLES 
DE GOUTTES NON DILUES 

R&sum&-On developpe un modble pour l’evaporation convective d’ensembles de gouttes. Le paramitre 
critique qui controle les differents modes d’tvaporation a Cte identifie comme &ant la distance de penetration 
de l’tcoulement externe dans le volume de l’ensemble. Un crittre dynamique est dtveloppe pour distinguer 
la penetration de la non penetration. L’evaporation convective est modelisee a l’aide d’une formule a 
nombre de Reynolds entre le flux &vapor& avec et sans convection. D’autres equations anterieurement 
developpees [l] pour l’evaporation calme ont et& utilisees ici, a l’exception dune nouvelle loi cinetique 
d’haporation a la surface de la gouttelette et d’un modele de temperature interne non uniforme qui ont 
ete introduits ensemble. Le modtle convient bien pour les faibles distances de penetration qui correspondent 
aux clusters dense dans des environnements chauds et aux vitesses relativement faibles entre gaz et cluster. 
Pour ce cas, le modtle predit que pour la m&me vitesse initiale le temps d’tvaporation est plus court lorsque 
le cluster devient plus dilut. Pour des clusters dilues et des longueurs de penetration grandes, on trouve le 
contraire. Puisque pour des grands longueurs de penetration la valeur predictive du modele se dtteriore, 
ceci peut &tre mis en question. Neanmoins le temps d’tvaporation est trouvt etre une faible fonction de la 
vitesse relative initiale et une fonction forte de l’ecart de temperature initial. La temperature initiale 
ambiante du gaz a une influence forte dans le regime des temperatures faibles 750-1500 K, tandis que 
l’influence est tres faible au regime des temperatures fortes. La contamination du gaz ambiant par une 
vapeur combustible est trouvte avoir une tres faible influence sur le temps d’evaporation pour des melanges 
riches quand le cluster est introduit dans des environnements fortement convectifs a haute temperature. 
Dans tous les cas, les resultats montrent que la chute de temperature interne est variable pendant la duree 
de vie de la goutte, mais les non uniform&% de la temperature persistent jusqu’a plus du premier tiers du 

temps total d’haporation. 
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ANALYSE DER KONVEKTIVEN VERDAMPFUNG VON UNVERDUNNTEN 
TROPFENSCHW.&RMEN 

Zusammenfassung-Ein Model1 fiir die konvektive Verdampfung von unverdiinnten Tropfenschwirmen 
wurde entwickelt. Als kritischer Parameter, der die verschiedenen Verdampfungsarten kontrolliert, wurde 
die Eindringtiefe der AuDenstriimung in das Schwarmvolumen identifiziert. Ein dynamisches Kriterium, das 
zwischen Eindringen und Nicht-Eindringen unterscheidet, wurde entwickelt. Die konvektive Verdampfung 
wurde dadurch modelliert, dal3 eine Reynolds-Zahl-Korrelation zwischen der Abdampfrate mit Kon- 

vektion und der Abdampfrate ohne Konvektion benutzt wurde. Andere Gleichungen, die bereits friiher 
fiir ruhende unverdiinnte Spriihverdampfung entwickelt wurden [I], wurden hier ebenso benutzt, mit der 
Ausnahme, da0 ein neues kinetisches Verdampfungsgesetz fiir die TropfenoberflCche und ein ungleich- 
maDiges inneres Temperaturmodell, welche hier entwickelt wurden, eingesetzt wurden. Es zeigte sich, 
da13 das Model1 fiir kleine Eindringtiefen, die fiir dichte Schwtirme in heil3er Umgebung und kleine 
Relativgeschwindigkeiten zwischen PuDerem Gas und Schwarm beobachtet werden, gute Ergebnisse liefert. 
Fiir dichte Schwirme mit kleinen Eindringtiefen, erhllt man aus den Modellrechnungen, daB bei der 
gleichen Anfangsgeschwindigkeit die Verdampfungszeit kiirzer wird je verdiinnter der Schwarm ist. Fiir 
verdiinnte Schwarme und groBe Eindringtiefen wurde das Gegenteil festgestellt. Da sich die Zuverlassigkeit 
des Modelles fiir groBe Eindringtiefen verringert, sind die letzten Trends fragwiirdig. Weiter wurde 
gefunden, da13 die Verdampfungszeit nur schwach von der anfgnglichen Relativgeschwindigkeit, dagegen 
stark von der Anfangstemperatur der Tropfen abhangt. Die Anfangstemperatur des umgebenden Gases 
hat im unteren Temperaturbereich (75&1500 K) einen starken EinfluI3, im oberen Temperaturbereich war 
der EinfluD schwach. Die Verunreinigung des umgebenden Gases durch Kraftstoff-Dampf hat einen sehr 
geringen EinfluB auf die Verdampfungszeit fiir reiche Mischungen. wenn der Schwarm in eine stark 
konvektive Hochtemperaturumgebung gebracht wird. In allen FZllen zeigten die Ergebnisse, daI3 die 
innere Tropfentemperatur wahrend des Tropfenlebens instationar war, da8 aber UngleichmHDigkeiten der 

Temperatur lingstens bis ein Drittel der Gesamtverdampfungszeit erhalten blieben. 

AHAJIM3 KOHBEKTMBHOI-0 MCHAPEHMR HJIOTHbIX CKOHJlEHkifi KAnEJIb 

AHHorauHn-Pa3pa6oTaHa MOnenb KOHBeKTUBHOI-0 HCIIapeHHK "JIOTHbIx CKONIeHHii KaneJIb. KpsTrtrec- 

~5ifi napaMeTp, xapaKTepu3yrowfR pa3nmHbIe pemiMbr AcnapeHm, 0npeneneH KaK paccTonHAe npo- 

HUKHOBCHHSI BHeUIHerO IIOTOKa B o6seM CKOFIneHUII. nOJIy'IeH nHHaMHYeCKHti KpUTepAti il,,R 

HaXO~neHA~pa3n~Y~iiMeEnyCny~aeMCnpOHAKHOBeHACMW6e3HerO.KOHBeKTWBHOeIiCnapCHAeMOnC- 

,IlipOBanOCb C BCIIOnb30BaHHeM 'IACJE3 PeiiHOnbnCa, BbIpa~aIOUSrO COOTHOUIeHBe MeW,y l,"TeHC&lB- 

HOCTRMH BClTapeHHS C KOHBeKLWii A 6e3 Hee. MCnOnb3yIOTCa ypaBHeH&lS, BbIBeneHHbIe paHee [l] nnll 
~CTOR~HBO~~ pacnbImTenbHor0 mnapeHm,aTaKme HosbIfi 3aKoH nnn KIiHeTUKR tlcnapeHm Ha nosepx- 
HOCTH Kanm H Monenb HeonHoponHoA BHemHefi TeMnepaTypbI,npennomeHHan B naHHoii pa6o-re.noKa- 

3aHo,'t~o Monenb HaH6onee npsronea nnn ManbIx paccTonHHl npoHuuaeMocTu,KoTopbIe nonyqamrca 

nnx nnoTHbIx cKonneHG B roprqeti 0KpymamueE cpene A nna uH3Kux 0THocHTenbHbIx cKopocTeA 

Mexny HapymHbIMu ra3am H cKonneHHeh4 Kanenb.&n nnoTHbIxcKonneHG c ManbIMA paccTommhw 

npOHAUaeMOCTB pe3yJIbTaTbI MOJNIH nOKa3bIBaIOT, 'IT0 LWI OJIHOfi A TOA *e HaWnbHOfi CKOpOCTH 

BpeM5I HCIlapeHEIR CTBHOBIITCK MCHbLlIe, no Mepe Tore, KaK cKonneHAe Kanenb cTaHoBmcza 6onee 

nnOTHbIM.,&"ll IInOTHbIX CKOIIneHAfi A 6onbmix paCCTOKHIlfi IlpOHHUaeMOCTH Ha6nmnanOCb 06paTHOe 

5IBnemie. nOCKOnbKy nna 6onbumx paCCTOKHIifi npoHuuaeMocTu pC3ynbTaTbI pacqeToB nony9amTca 

MeHee TOgHbIMA, ,,OCJ,enHHe 3aKOHOMepHOCTM IIBnIIH)TCII CnOpHbIMH. 6Onee TOTO, HafineHO, 'IT0 BpeMK 

ACIIapeHHn cna6o 3aBHCMT 01 Ha'WIbHOti OTHOCHTeJIbHOi? CKOpOCTu H CRnbHO JBBHCUT OT Ha'IanbHOrO 

nepenana TeMnepaTypbl. 06HapyxeH0, wo HaqanbHan TehmepaTypa orpy~aroruero ra3a oKa3bIBaeT 

CRnbHOe BnHllHHe IIpH HH3KOTeMIIepaTypHOM peXOiMe B o6nacTa TeMIIepaTyp 75&1500 K, B TO BpeMI 

KaK npu 6onee BblcoKHx TeMnepaTypax 3To BnmHWe 0geHb Mano.HaPneHo,~To mKaxeHm,BHocAMbIe 

napam Tonneea, cna6o mHmoT Ha BpeMn acnapeHun B 060raIWHHbIX wecnx, Korna cKonneHAK 

KaneJIb BBOLVITCI B BbICOKOTeMnepaTypHbIii KOHBeKTABHbIfi nOTOK. Bo BCeX Cny'IanX pe3ynbTaTbI IIOKa- 
3bIBaH3T, YTO BHyTpeHwiB nepenan TeMnepaTypbl H3MeHKeTcn B TeYeHAe epeMetia xc113~n Kanm, a 


