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Abstract—A model for the convective evaporation of nondilute clusters of drops has been developed. The
critical parameter which controls the different evaporation modes has been identified to be the penetration
distance of the outer flow into the cluster volume. A dynamic criterion has been developed to differentiate
between penetration and no penetration. Convective evaporation was modeled using a Reynolds number
correlation between the evaporation rate with and without convection. Other equations, previously
developed [Combust. Flame 51, 5567 (1983)] for quiescent, nondilute-spray evaporation, have been used
here as well, with the exception of a new kinetic-evaporation law at the droplet surface and a nonuniform
interior temperature model which have both been developed here.

The model is shown to perform well for low penetration distances which are obtained for dense clusters
in hot environments and low relative velocities between outer gases and cluster. For dense clusters with
low penetration distances the results of the model predict that for the same initial velocity the evaporation
time is shorter as the cluster becomes more dilute. For dilute clusters and large penetration distances, the
opposite was found. Since for large penetration distances the predictive ability of the model deteriorates,
these last trends are questionable. Furthermore, the evaporation time was found to be a weak function of
the initial relative velocity and a strong function of the initial drop temperature. The initial surrounding
gas temperature was found to have a strong influence in the lower temperature regime, 750-1500 K,
whereas in the higher temperature regime the influence was very weak. The vitiation of the ambient gas by
fuel vapor was found to have a very small influence upon the evaporation time for rich mixtures when the
cluster is introduced in a strongly convective, high temperature surroundings. In all cases the results show
that the interior drop-temperature was transient throughout the drop lifetime, but nonuniformities in the

temperature persisted up to at most the first third of the total evaporation time.
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1. INTRODUCTION

THE BEHAVIOR of sprays injected into combustors is
of great practical interest because of the variety of
power systems using liquid fuel as a source of energy.
Typically, the liquid fuel is atomized into droplets in
a chamber where it mixes with ambient gases and
burns. The interaction between the spray and the
ambient gas is complex due to turbulent effects which
distort the shape of the spray as it moves through the
chamber and disperse the droplets. Moreover, the
proximity of the droplets in the spray leads to inter-
actions between the drops themselves such as colli-
sions, coalescence, hydrodynamic interactions and
limitations on the evaporation rate due to local fuel
vapor accumulation. The coupling of all these
phenomena yields an extremely complicated physical
picture that cannot presently be described by a modet
that is computationally reasonable. For this reason,
the entire problem has traditionally been divided into
simpler problems that are tractable and that usually
emphasize a particular aspect of the physical situation
with the aim of gaining a deeper understanding about
it. The ultimate goal is to be able to use this under-
standing for the description of the more complicated
problem.

In this paper, interest is focused on the nondilute
aspect of sprays, and in particular on how it can
influence droplet heating and evaporation in a con-
vective flow. An issue that will be addressed here is,
for example, that of the difference in the convective
evaporation between a drop, a dilute spray and a
dense spray for a given initial relative velocity. More-
over, for a given spray with a specified drop-number
density, the question of the influence of the initial
relative velocity between the gas and the spray will be
considered. This is because it is important to know
first how much of a reduction in the evaporation time
can be expected by increasing the relative velocity and
also to know if asymptotic behavior might be reached
in the process. Further, the effects of the initial tem-
perature of the surroundings and the initial tem-
perature of the drops will be investigated. Finally, it
will be shown that the initial vitiation by fuel vapor
of the gas surrounding the spray has a negligible effect
for rich mixtures, when the spray is introduced into
a strongly convective, high-temperature surrounding
gas.

Section 2 presents the model formulation while
some equations previously developed are recalled in
the Appendix. The numerical procedure used to solve
the model equations is briefly outlined in Section 3.
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NOMENCLATURE
a radius of the sphere of influence [cm] Vi N
C  nondimensional evaporation rate, ¥ 4nR%/3 [em?)
—mf(4np DR®) W,  molecular weight of species i [gmol™!]
Cp  drag coefficient ®,
C*  defined by equation (17) Yr J S MVrdy+V, Y3,
C,  heat capacity at constant pressure Ry
[calg™ ' K~'] Y,  mass fraction of species i
D diffusivity [cm*s™!] y r/R°
d,  effective cluster diameter [cm] z r/R.
f(R,R) (R3—R)/3
g(Ri, Ry (€7 —eRy) Greek symbols
R, o constant
I(R,, Ry, €) J ey?dy AC, fitted C,~C,, for the saturation pressure
R curve [calg™'K ']
L latent heat of evaporation cal g~ ] 3 —2InR,(1)
M evaporation flux [gem™?s7!] &y VyVr
m mass [g] 0 C,T/Ly,
m evaporation rate {gs™'] A conductivity [calem™'s7' K]
N total number of drops T defined by equation (5)
n density of drops in the cluster [cm™?] o —pCuR(dR/dt)/ 4
)4 pressure [atm] ¢ air/fuel mass ratio
R radius of a drop [cm] o, stoichiometric air/fuel mass ratio
R,  universal gas constant p density [gem 7]
[atm?s’cm®g 'mol 'K '] p plpe
R,  universal gas constant [calmol 'K ™! Pl (RI-D3+V,
R*  defined by equation (20) Pt pi3
R*  universal gas constant v kinematic viscosity [cm?s™']
[atmcm’ mol ="K '] X defined by equation (21)
R, cluster radius {cm] ¥ equivalence ratio, ¢/¢,.
R, R/R®
R, a/R° Subscripts
r radial coordinate [cm] a at the edge of the sphere of influence
¥ 4nR*[cm’] ag  ambient gas
T  temperature [K] bn  normal boiling point
N R, c cluster
T J [0(»)—1y*dy+V,(05.— 1) d droplet
: F fuel
7% pH0p—1)Ch/Cpp g gas
£, evaporation time (time for R, to decrease 1 liquid
t0 0.05) [s] 0 initial
u velocity [cms™'] p partial
u, velocity associated with the gases evolved s droplet surface
through evaporation [ems™'] sat  saturation
u,  relative velocity, (4, —u) [cms™] st stagnation
u, far field flow velocity [cms™'] v vapor.
V, 4nR3/3 [cm?]
¥V,  (4nnR°*~'—RI/3 Superscripts
V, (4nnR7)"'—R}/3 ° initial.

The results obtained by solving this system of equa-
tions are discussed in Section 4, and finally in Section
5 the main features of the model are recalled and
conclusions are presented. All the symbols used are
identified in the Nomenclature.

2. MODEL FORMULATION

Figure 1 shows the physical picture studied here. A

moving spherical cluster of monodisperse, uniformly
distributed, spherical droplets made of single-com-
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FiG. 1. Physical picture of the cluster of drops in a convective flow. (a) System of coordinates attached
with the ambient gas. (b) System of coordinates attached with the cluster.

ponent fuel depicts a collection of drops from a spray
that is exposed to a convective flow characterized
by the velocity u,,. A real spray is viewed here as a
multitude of these clusters of drops, but the present
formulation is restricted to the description of one
individual cluster.

The droplets in the cluster are all assumed to move
with the same velocity, u.. Thus, in the frame of ref-
erence attached to the center of the cluster, the velocity
of the flow past the cloud is u, = u, —u.. The equa-
tions describing evaporation of the cluster are written
in this frame of reference.

As in the model of Bellan and Cuffel [1], each drop-
let of the cluster is considered surrounded by a fic-
titious sphere of influence; the ensemble of these
closely-packed spheres and the spaces between them
is the entire volume of the cluster. The gas surrounding
the droplets is typically air which might have been
vitiated. Furthermore, it is assumed that: the gas
phase is quasi-steady with respect to the liquid phase
(reasonable for low pressure conditions); the drop
temperature is a function of droplet radius and time
(justified for very viscous liquids, such as heavy fuel
oils, where recirculation of the flow inside the drop is
minimal and the limit of zero Hill vortex strength

is applicable [2]); the temperature is a continuous
function at the drop surface ; all dependent variables
are averaged in the spaces between the spheres of
influence ; the Lewis number of the gas phase is unity;
the quantity pD is constant; C,,, C,, 4, and 4 are
averaged and constant; p, is time dependent but uni-
form; p, is constant ; the cluster is not exposed to body
forces; the Mach number of the gas phase is much
smaller than unity; radiative and other heat-loss
mechanisms are neglected.

For reasons explained below we adopt the classical
approach [3, 4] that does not attempt the detailed
prediction of the flow field around each drop when a
cluster is exposed to a convective flow. Instead, what
is of interest here is the modification of the value of
the evaporation rate due to the convective flow as well
as global features of the ensemble of drops. For this
reason, we will still use here a model of quiescent
evaporation and the modification of the evaporation
rate will be described according to well-known cor-
relations [4].

A. The liguid-phase formulation
The life history of a droplet of single-component
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fuel is described entirely by the energy equation

or, ¢ T,
2 L 2 V0N o
4nrip Cy 3 6r<4m A Gr) 0. (§)]
The appropriate boundary conditions are
a7,
or );,0 =0 @
a7, dT,
24 i 2 g .
- —— = — A . (3
4nR°4 o )Y_R 4nR"4, ar )rzR-}—mL 3)

In order to simplify the numerical solution technique,
equations (1)-(3) are solved in a system of coordinates
fixed with the regressing droplet surface. These new
coordinates (z, t) are introduced as follows:

“)

&)

Once nondimensionalized and transformed into this
new system of coordinates, equations (1)-(3) become

(L Ch 1 Ca\
T ot T TTRIC,) 0z
22 Cpg 620]
s e = ) (6
R; C, 0z° ©
a0
J) =0 @)
CZ J:=9
26, A, dB CJ, L
et =R, -E& PR
52)::1 !it dy))‘zR, Ry & Ly, ®

C is here a nondimensional evaporation rate as
defined in the Nomenclature.

B. The kinetic evaporation law

Evaporation of a substance at a surface is the result
of the difference between the flux of molecules of the
substance leaving the surface and that of molecules of
the same substance striking the surface [5]. This is
expressed by:

ST (L. D
sats s zﬁRu Tgs

where

Lo ,Wef 1 1
Pous = atm)eXp[ R, (Tbn - ?;)

AC, W, Too . Ton
+—% (1—Tgs+1n-Tgs (10)

-~ YFVS 1
Pps = We S YW,

Ds- (1

In equation (10) we made the implicit assumptions
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that the gas is perfect, away from the critical point,
and that AC, is a constant.
When nondimensionalized, the kinetic evaporation

rate equation becomes
CWef 1 1
Ru 6bn ggs

AC, Wy O . Opn
+ Ru (1 b '{‘;‘“ + In 5—

as &

Ru
= — 2
C aR] Gp.D {(1 atm)exp [

W.C,, 1\
F>pg ~> (12)

x <2nRuLbn 0,
Equation (12) is the correct form of the evaporation
law which is often simplified to yield the Clausius—
Clapeyron relationship. That relationship has been
extensively used despite the fact that it has been shown
to lead sometimes to inconsistencies and inaccuracies

5}

C. The gas-phase formulation

The set of equations describing the behavior of
the mass fractions, temperature, density and pressure
during evaporation in quiescent surroundings has
been developed in ref. [1]. To summarize it, two sets
of equations were formulated. The first set described
evaporation of an individual droplet inside its own
sphere of influence. The second set were global con-
servation equations inside the control volume of the
cluster and they described the behavior of the depen-
dent variables at the edge of the sphere of influence.
Thus they were coupled to the first set of equations.
The Appendix contains the solution of this set of
equations in terms of the dependent variables. This
solution is still valid here with the exception of the
calculation of the evaporation rate, C, which is now
different due to the existence of the convective flow.
The model used for calculating C is described next.

Sprays exposed to convective flows behave
very differently from quiescent clouds of drops.
First, the geometry of the entity changes due
to turbulence-induced flows and recirculation.
Second, the evaporation rate increases. Both
the change in geometry and the enhancement of
evaporation are very difficult to model; the main
concern here is the determination of the eva-
poration rate. It has been established long ago [3]
that when an individual drop is exposed to a flow
past it, its evaporation rate increases and the new
evaporation rate can be expressed in terms of the
evaporation rate in quiescent surroundings multiplied
by a factor containing the Reynolds number. More
recently, Prakash and Sirignano [2] and Dwyer and
Sanders [6] have modeled the details of the external
flow around a droplet and the coupled internal flow
dynamics inside the droplet for a droplet immersed
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in a convective flow. However, these results are not
directly applicable to drops in a nondilute spray
because the flow around each drop of the spray is
influenced by the presence of the other drops. Tal er
al. 7] have mathematically treated the situation of
flow over three equal and constant-diameter spheres
equally spaced in one direction and found that a
remarkable hydrodynamic periodicity evolved begin-
ning with the first sphere after the inlet-exposed
sphere. In fact, both the drag coefficient and the Nus-
selt number tend to stabilize after the second sphere.
In contrast, the temperature field was found aperiodic
and had to be resolved for each particular sphere. It
is difficult to predict how these results might change
when evaporation and the resulting decrease in
sphere-size are considered.

It is obvious that when describing a nondilute clus-
ter composed of a multitude of droplets it is imprac-
tical to attempt a detailed description of the exterior
and interior flow patterns, temperature and mass frac-
tions around and inside each drop, unless there is
indeed a common aspect to all of them. Therefore,
one needs to reconsider the interactions between a
cluster and the surrounding flow so as to isolate the
important and relevant aspects. These are taken to be
as follows: (i) extent of the flow penetration inside the
cluster volume at each instant in order to assess which
droplets are aware of the existence of the flow; (ii)
the magnitude of the instantaneous relative velocity
between the cluster and the flow ; and (iii) the relation-
ship between the evaporation rate with and without
flow.

To assess whether the interior of the cluster is pen-
etrated by the outer flow, a comparison between the
flow of gases yielded by evaporation from the drops
and the flow of gases coming from the outer flow at
the cluster surface is made here. This yields a dynamic
criterion for cluster penetration similar to a static
criterion previously developed [8]. Based upon the
results of previous calculations [1], the pressure inside
the cluster is considered equal to that in the ambient
flow. Then, at instant ¢, the cluster will not be pen-
etrated if

Paatt? < pyctid. (13)
But
Ue = Mpy. (14)
M = vy |¥ = mnR/3 (15)
so that the criterion becomes
>3 e (16)

Nondimensionalizing, identifying p,. as p,, and
defining C* as
3 1 wup,
* o 2T rga ~
4n RR° n(p,D) \/pga

(1

the criterion specifies that no flow penetration will
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occur for

IC| > C*. (18)

Since C* 1is directly proportional to u, this is an
additional reason for calculating u, as a function of ¢.
This is done here by solving the momentum equation
for a sphere moving through a fluid :

dn, _
Medr T

A
- 'gdgngDluc*uool(uc_uoo)' (19)

If complete penetration of the flow occurs, the sphere
is each individual droplet; however, if there is no
penetration by the outer flow, the sphere is the entire
cluster because the flow goes past the cluster. In order
to have a smooth transition between these two
extremes, partial penetration is considered as well.
For this purpose, an effective radius of the sphere is
defined as

R*=R+(ﬁ_R)min(l,ﬁ) (20)
where
o,
L=y T u, —u @b

With this formulation, if |C| > C*, there is no pen-
etration and R* = R, as expected. If |C| < C* there
is penetration and R* = R, where R is the equivalent
radius of the stagnation point surface for the solution
of the incompressible potential flow around a sphere.
The \/;(, rather than %, was chosen in the definition
of R* in order to introduce the similarity with the
incompressible potential flow solution for the stag-
nation point. When |C| « C* there is complete pen-
etration and R* = R, as expected. In equation (19)

d. = 2R* (22)
and
4
M, = 3 pR*: 23)
my+m
= = pieyt pe(1—gy). (24)

pc - VT

In this manner, all possibilities are described by the
general momentum equation

du, 3p, 1
dat = 8 p R*CO% @)
where
Cp = 0.271Re®?' (26)
2R*
Re=""" @7

vag
Equation (26) represents a correlation valid for Rey-
nolds number up to 10* [4, 9]. Reliable correlations for
higher Reynolds numbers have not been found. If
such relations become available, they can easily be
incorporated into this model.

When a cluster is not penetrated by the flow around
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it, a distinction must be made between the drops of
the outer shell whose evaporation is affected by the
flow and the inner drops whose evaporation is not
affected by it. Thus the average evaporation rate of
the cluster is defined as

R*\} R*\  (R*—a\
=enli) veel (5 (55

R*\
+CRE<1 —7> (28)

where
0.278Re??
Cg., = C(&:m[l + U+—L23771W] (29)
and
Re, =0 (30)
Re, = Re @1
2R
Rey =t 32)
vag

In equation (28) the first term on the RHS accounts
for the evaporation of the drops in the core of the
cluster, the second term represents the evaporation of
the droplets in the outermost shell of the sphere of
radius R*, whereas the third term accounts for the
evaporation of the drops in the spherical shell between
the radius R* and R, as shown in Fig. 1. The cor-
relation for Cp, was used extensively [4] and reduces
to the Ranz—Marshall expression in the limit of very
large Reynolds numbers. As it will be pointed out in
the discussion of the results, the effective radius R*
as defined by equation (20) is a good representation
for dense clusters but becomes less appropriate as the
cluster becomes more dilute.

3. NUMERICAL PROCEDURES

One of the complications in making calculations
with the present model, as compared to the previously
mentioned one [1], is that the drop temperature dis-
tribution must be found at each time step. Another
complication is that the kinetic evaporation law,
along with the equation of state, form a nonlinear
implicit set of equations for the pressure and
evaporation rate, C, if 0, = 0y, is assumed. These
equations must be numerically iterated to solve for
the pressure and evaporation rate.

In order to treat the drop temperature distribution
equation, the independent variable is changed from
time to a new time-like variable :

(B = —2InR (D). 33)
The drop heat conduction equation becomes
00, 26, %6, 2 96,
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where

plel dR
b Sy
4 de (33)

The surface boundary condition may be written as

o6
3, = —0)GE) atz=1

(36)
where the function G depends on the surface tem-
perature, normalized radius R, and evaporation par-
ameter, C. (The total dependence on the surface tem-
perature is highly nonlinear. This poses potential
numerical stability problems.) The function o is rela-
tively small for cases of interest and is very weakly
varying. An expansion in parameter ¢ may be made;
it was found that this is equivalent to expanding 6, in
powers of z°. (Odd powers do not appear due to radial
symmetry.) A four-term truncated series, to order (z°),
gives adequate numerical accuracy. Let

3
6 =Y By{&)z¥, with, =0, (z=1).
j=0

Then in terms of 6, and a function F(¢)

B, =10 —35 1 2 F 3 1 2 G

0=+ gll-ggo |F=gl1-50)0
5 1 35 5

B] =Z(1 _§U)O'G '—z(l —850'>F

7l 2
sii—go (5F—-0G)

1
B = 50(5F—aG)

B, =

where

5 2 dw
F= <l —ad)W(é)‘f‘aG&

dB F)= 3GF
Ié(ls+ )__E( ~F)

These give a consistent solution, accurate to order
(¢®), in terms of the two unknown functions (0,,+ F)
and w.

The numerical integration is carried out using the
GEAR integrator package [10]. For each integrator
step, the following iterative procedure is applied.

(i) Predict values of F, G, 0.

(ii) Solve the equation of state and the kinetic evap-
oration law by Newton-Raphson iteration for
the pressure and evaporation rate.

(iii) Apply the convection correction to the evap-
oration rate.

(iv) Correct the values of F, G, 0.



Analysis of the convective evaporation of nondilute clusters of drops

A repeat is made starting at (ii) until convergence
is obtained. Thus, each step requires a double-loop
iteration to calculate the surface temperature, evap-
oration rate, and pressure.

4. DISCUSSION OF RESULTS

One of the goals of the present research is to develop
a self-consistent model of convective spray evap-
oration that will qualitatively agree with experimental
observations. For this reason we are interested in the
extent of the external flow penetration inside the clus-
ter and how this penetration influences evaporation.
We are also interested to determine to what extent the
temperature profile inside each drop of the cluster
becomes nonuniform during heating and evaporation,
and finally we want to identify the parameters most
critically affecting the evaporation.

All calculations here were performed for drops of
initial radius R° = 2 x 1073 ¢m using n-decane as the
fuel and air as the ambient gas. Table 1 illustrates
various thermophysical constants used in the cal-
culations and Table 2 shows the actual parameters

Table 1. Parameters and thermophysical properties used in
the calculations

R=10cm

Gas phase: Wy = 142 g mol ™!
W, = 28.9 gmol™’
Cpe=0241cal g~'K™!
D°=0.1cm*s™!

Liquid phase: p=0734gem™’?

Cy=0.523calg™' K™'

A=25x10"%calg' K}
w=135x10"2gem™'s7!
T, = 477K

Ly, =7392calg™!
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Table 2. Values of the parameters used in the parametric

study
u? Tea Ty
¥ (ems™") X) X) Fra
0.02 sweep 2000 350 0.0
sweep 200 2000 350 0.0
sweep 1000 2000 350 0.0
0.02 1000 sweep 350 0.0
0.02 1000 2000 sweep 0.0
0.02 1000 2000 350 sweep
Sweeps :
b 4 (0.005), 0.02, 0.05, 0.10, 0.20, 1.00, 5.00, 10.00,
20.00, 50.00
w2 (cms™") 10, 25, 50, 100, 300, 750, 1500, 2000
T (K) 750, 1000, 1500, 2000, 2500
T, (K) 350, 380, 410, 440
Y 0.00, 0.01, 0.05, 0.06, 0.07, 0.10, 0.15, 0.155.

that were varied during the calculations and the range
within which they varied. In general, calculations were
performed for a rich cluster and a high ambient tem-
perature so as to simulate evaporation of a dense
cluster of drops immersed in a hot environment result-
ing from combustion of other clusters previously
injected.

The plot in Fig. 2 shows that there are three regions
where the evaporation time exhibits different be-
haviors. The first region is that of very dense clusters
where evaporation is hindered by accumulation of fuel
vapor in the gas phase so that eventually saturation is
obtained before complete evaporation. In contrast to
the other regions, here the evaporation time is defined
as the time when evaporation stops so that as ¢
increases saturation is obtained faster and thus ¢,
decreases. The second region is that of dense clusters
where evaporation is enhanced as the cluster becomes
more dilute because there is more coupling between
the gases and the drops as the cluster becomes more
penetrated by the gases. The third region is that of the

T [ T T
0 .
Tga = 200K
3 Tgs - 30K -
Yfya = 0.0 .
o ar /s uS. = 200 cmisec |
& 7
“ / -
NE 3 / n=71cm 34
= R, = 145.6
! . u%"= 1000 cm/sec 2
- i n=25x10%cm3 r
2 Ry =9.6 .
n=10° cm™3 RICH ~ LEAN
I Ry6.0 i
(Saturation before
complete,evaporation) | ) .
102 1071 109 10! 102 103

¢

F1G. 2. Evaporation time versus the mixture ratio for two initial relative velocities between the cluster and
the gases.
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dilute and very dilute clusters where it is predicted that
the evaporation time increases as the cluster becomes
more dilute. These last results are questionable and
must await further confirmation since as it will be
shown below the model becomes invalid at large pen-
etration distances. For the same mixture ratio, a
larger initial relative velocity will accelerate evap-
oration, as expected. (It should be pointed out that
the cases of the very dilute clusters exposed to a large
initial relative velocity might be somewhat unrealistic
since it is difficult to imagine that a cluster containing
so little mass can sustain significant relative velocities.)

The above results are qualitatively correct with the
understanding that the predictive ability of the model
deteriorates as the cluster is more dilute or becomes
more penetrated by the outer flow. This can be seen
in Fig. 3 where a nondimensional expression related
to the penetration is plotted vs R,. For very dense
clusters there is initially little or no penetration, but
as evaporation proceeds u, decreases faster than u,
and so penetration becomes more important. When
the cluster is substantially penetrated, the present
model becomes invalid because for this condition the
Reynolds number should be based upon another

4
Tga - 2000°K 0.05v
= 0.02 x
1.0+ Tgs 350K 0.05 o
Yya = 0.0 0.1 a
ul = 200 cm/sec 0.20 O
0.9# r 100 o
5.00 v
10.00m

0.8
0.7

0.6~

i
R
0.5

0.4~

0.3k

0.2

0.1

ob—t 14141111
0 01020304050.6070.8091L0

Ry

Fi1G. 3. Normalized residual penetration distance vs nor-

malized instantaneous droplet radius for various equivalence

ratios (rich: ¥ < 1; lean: ¥ > 1). The penetration distance
is defined as R(1 — R*/R).

length than the penetration distance as defined in equa-
tion (20). The same comment is valid for the character-
istic distances included in the definitions of equations
(22)-(24). Since the solution of the momentum
equation is a function of these definitions, it is
expected that the prediction of the relative velocity as
a function of time is also somewhat in error. The
choice of the appropriate characteristic distance to be
used in this relationship is not obvious and additional
modeling is needed to remove this difficuity. Since for
dense or dilute clusters the penetration distance seems
non-negligible the development of a more accurate
model seems necessary. It is however expected that
the trends presented here are still correct, although
for example the slope of the curves presented in Fig.
2 will change. In order to compare the present results
with the classical single-droplet-in-quiescent-environ-
ment solution we display in Fig. 4 a plot of R? vs time
for various values of ¥. As expected, none of these
curves is a straight line, except in the one case where
the cluster is so dense as to lead to saturation before
complete evaporation.

To ensure that our results are as correct as possible,
the next parametric studies were all made for rather
dense clusters where the convective evaporation
model performs best.

Figure 5 shows the influence of u; upon the evap-
oration time of the cluster. The important observation
here is that the evaporation time seems to be only a
weak function of ;. For example, increasing u; by a
factor of 10 from 10 to 100 cm s~ ' decreases ¢, by only
26% and increasing u; by a further factor of 20 to
2000 cm s~ decreases £, by only 45%. The practical
conclusion is that for clusters, as distinct from isolated
drops, large increases in the initial relative velocity
must be planned before significant reductions in the
evaporation time can be expected.

In contrast, the results of Fig. 6 show that, in the
lower temperature regime, the initial ambient tem-
perature plays an important role in controlling the
evaporation time of the cluster. Beyond 1500 K, little

]

u?, = 200 cm/sec
0 . = Q0 .
Tga = 2000°K, Tgg = 350°K, Y§,, = 0.0
1.0 ¥ 1
0.005 v
0.8 0.02 =
0.05 e
0.6 0,10 a
™ 0.20 o
= 0.4 L0 o
*\ 5.0 v
0.2
,\1(3.0()-
0.0 L ™ _J
1 2 3 4
tx 102, SEC

FIG. 4. Variation of the normalized square radius with time
for various equivalence ratios (rich: ¥ < 1:lean: ¥ > 1).
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7

6 = 0,314 a
= 2000°K

(&)

&0 = 3500K ﬂ

%L .

= = 0.0

=< 4

/

2 il
10 100 1000 10000

U0 r

FiG. 5. Evaporation time vs the initial relative velocity
between the cluster and the gas.

is gained by further increasing the initial temperature
of the surrounding gases. The results obtained by
varying T, were also used to study the drop-tem-
perature nonuniformities during evaporation. This is
because the variation of T, — T, allowed the obser-
vation of steeper gradients developing as this tem-
perature difference increased. Plotted in Fig. 7 is the
time-history of the nondimensional drop temperature
vs the nondimensional drop radius for the largest
difference T, —7T, where most nonuniformities
developed. Initially, the drops are introduced at con-
stant temperature but very quickly a gradient develops
due to the heat demanded for evaporation. [This is
to say that in the very initial period, the boundary
condition expressed by equation (3) controls the
dynamics of evaporation.] Simultaneously, the ambi-
ent temperature decreases substantially because heat
is transported to the drop’s surface to promote evap-
oration. It is to be noticed that by the time R, = 0.8
the ambient temperature has decreased by factor of
2.2. This is explained by the fact that when R, = 0.8,
49% of the drop’s mass has already evaporated. The
results presented in Fig. 7 also show that by the time
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Fi1G. 6. Evaporation time vs the initial surrounding gas
temperature.
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F1G. 7. Nondimensional internal drop temperature profile at
various residual drop sizes.

R, has reached 0.8 the internal temperature profile
has become uniform. In terms of time spent in a non-
uniform temperature configuration, the drop has
spent a third of its lifetime in this mode. Thus, accord-
ing to the table in Fig. 7, two thirds of the droplet
lifetime will be spent in a uniform temperature con-
figuration during which about 50% of its mass will be
evaporated. These results are in partial disagreement
with those obtained by Prakash and Sirignano [2]
for individual single-component fuel drops for which
drop-temperature nonuniformities persisted up to the
end of the drop’s life. It is unclear at this point if
this is due to their more sophisticated interior-droplet
model or to the fact that they study only individual
drops. The viscosity of the fuel here is large enough
to make the zero-Hill-vortex-strength limit acceptable
and thus the present model seems appropriate. In fact,
a calculation of the ratio of the characteristic time
for circulation to the characteristic time for heat-up,
[(A/Co))/ (/) shows that this ratio is 3.53 x 1072
(the values of the constants are given in Table 1), and
thus the heating time is indeed independent of the
circulation time which makes the model and the
results self-consistent. In agreement with ref. [2] we
found that unsteadiness in the liquid phase persisted
to the end of the drop’s lifetime.

The strong dependence of ¢, upon T, is shown in
Fig. 8, where it is seen that about 20% increase in the
initial drop temperature results in about 34%
decreases in the evaporation time. For an initial tem-
perature close to the normal boiling point the drops
are initially so hot that evaporative cooling is observed
up to R, = 0.8 (23% of the droplet lifetime) after
which heating occurs again.

Figure 9 shows that ¢, has a very weak dependence
upon Yg,, for rich mixtures, merely because the drop
number density changes very slowly with Y3,,. For
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Fi1G. 8. Evaporation time vs the initial drop temperature.

these rich mixtures Y§,, can be increased as much as
to obtain saturation at the initial condition and it is
found that in the entire regime 7. depends linearly
upon Y3,..

5. SUMMARY AND CONCLUSIONS

The model of convective droplet-cluster evap-
oration developed herein is based upon the concept
of a penetration distance defined as the distance that
the outer flow penetrates into the cluster volume. If
there is no penetration, the outer flow bypasses the
cluster of drops and only the drops at the periphery
of the cluster feel the effect of the convective flow. If
the flow penetrates completely, each drop feels the
effect of this outer flow. Partial penetration was also
considered, and included in this model is an expression
developed by similarity with the incompressible
potential flow around a sphere. In all situations, the
decrease in the relative velocity between the cluster
and the gases was calculated using a momentum equ-
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FiG. 9. Evaporation time vs the initial fuel vapor mass
fraction at rich overall conditions.
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ation for the cluster that takes drag into account. The
evaporation enhancement due to the convective flow
was modeled using a correlation based upon the
Reynolds number.

Results obtained with this model show that the
theory is valid for very dense and dense clusters when
the penetration distance is small. As the penetration
distance increases, the model is no longer self-con-
sistent and additional considerations must be raised
to find an alternate to the definition of the penetration
distance as done here. However, the trends of the
results are still expected to be correct especially since
most of the situations considered here were those of
dense clusters in hot environments.

Parametric variations have shown that there are
three regions where the evaporation time exhibits a
different behavior. In the very dense cluster regime
where saturation is obtained before complete evap-
oration, the evaporation time (defined here as the
time when evaporation stops) decreases as the cluster
becomes denser. In the dense cluster region where
no saturation is encountered, the evaporation time
decreases as the cluster becomes more dilute. Finally
in the dilute and very dilute regimes the evaporation
time increases as the cluster becomes more dilute.
These last results must await further confirmation
since the predictive ability of the model is questionable
in these regimes. For the same equivalence ratio, the
dependence of the evaporation time (defined as the
time to reach R, = 0.05) upon u; was found to be
weak over the range 10-2000 cm s~'. In contrast, for
ambient temperatures in the range 750-1500 K, the
evaporation time was found to be a strong function

"of Tg,, whereas further increase in the temperature of

the surroundings proved fruitless in decreasing the
evaporation time. The initial drop temperature was
shown to strongly affect evaporation, and close to the
normal boiling point evaporative cooling was
observed. For dense clusters, the initial vitiation of
the surrounding gases affected the evaporation very
little except when saturation was obtained, and then
no evaporation occurred.

In all situations encountered here the internal tem-
perature of the drops exhibited an unsteady variation
throughout the drop’s lifetime. However, nonuniform
temperature profiles were observed only during the
initial part of the drop’s lifetime; the largest non-
uniformities persisted for a third of the drop’s lifetime
corresponding to about 50% of mass evaporated.

All the results presented here are qualitative and
further modeling is needed to improve the predictive
ability of this droplet-cluster model.

Acknowledgements—This work was sponsored by the U.S.
Department of Energy through an agreement with the
National Aeronautics and Space Administration (DOE
Interagency Agreement No. DE-A101-81CS66001: NASA
Task No. RE-152, Amendment 308). The work was done for
the Energy Conversion and Utilization Technologies
Division, Mr Marvin Gunn, Jr, Program Manager, U.S.
Department of Energy.



10.

1
C=—r——I+0,-05)/| ———= +— —
R —R;! { (6, s)/[Lbn C 4, 0z ::1:|} +aPV1[YFv4<WL*‘ 1 >+L:'933}.
F

Analysis of the convective evaporation of nondilute clusters of drops 135

REFERENCES

. J. Bellan and R. Cuffel, A theory of non dilute spray
evaporation based upon multiple drop interactions,
Combust. Flame 51, 55-67 (1983).

. S. Prakash and W. A. Sirignano, Theory of convective
droplet vaporization with unsteady heat transfer in the
circulating liquid phase, Int. J. Heat Mass Transfer 23,
253-268 (1980).

. W. E. Ranz and W. R. Marshall, Evaporation from
drops, Chem. Engng Prog. 48, 141-173 (1952).

. G. M. Faeth, Evaporation and combustion of sprays,
Prog. Energy Combust. Sci. 9, 1-76 (1983).

. J. Bellan and M. Summerfield, Theoretical examination
of assumptions commonly used for the gas phase sur-
rounding a burning droplet, Combust. Flame 33, 107-
122 (1978).

. H. A. Dwyer and B. R. Sanders, Detailed computation
of unsteady droplet dynamics, Presented at the 20th Int.
Symposium on Combustion (August 1984).

. R.Tal,D. N. Lee and W. A. Sirignano, Hydrodynamics
and heat transfer in sphere assemblages; multisphere
cylindrical cell models, Int. J. Heat Mass Transfer 26,
1265-1273 (1983).

. J. Bellan and K. Harstad, Evaluation of the importance
of slip velocity during evaporation of drops in sprays,
Paper 84-1 presented at the Spring Meeting of the West-
ern States Section/The Combustion Institute (1984). To
be published in Int. J. Heat Mass Transfer.

. F. Boysan, W. H. Ayers, J. Swithenbank and Z. Pan,

Three dimensional model of spray combustion in gas

turbine combustors, J. Energy 6, 368-375 (1982).

A.C.Hindmarsh, GEAR : ordinary differential equation

system solver, Lawrence Livermore Laboratory Report

UCID-30001, Rev. 3 (December 1974).

APPENDIX

The equations that yield the gas-phase solution are:

YFvs=(YFva_l)eC(R;IAR;I)+1 (A2)
3" D 3 1/3
R, =<1 +Tfs‘ozf ca:) (A3)
PlR 0
e=1—R} (Ad)
ﬁ]+6i’2

- A
P = f(R, R+ T (43)
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ANALYSE DE L’EVAPORATION CONVECTIVE D’ENSEMBLES
DE GOUTTES NON DILUES

Résumé—On développe un modéle pour I’évaporation convective d’ensembles de gouttes. Le paramétre
critique qui controle les différents modes d’évaporation a €té identifié comme étant la distance de pénétration
de I’écoulement externe dans le volume de I’ensemble. Un critére dynamique est développe pour distinguer
la pénétration de la non pénétration. L’évaporation convective est modélisée a 1'aide d’une formule a
nombre de Reynolds entre le flux évaporé avec et sans convection. D’autres équations antérieurement
développées [1] pour I’évaporation calme ont été utilisées ici, & 'exception d’une nouvelle loi cinétique
d’évaporation a la surface de la gouttelette et d’un modéle de température interne non uniforme qui ont
été introduits ensemble. Le modéle convient bien pour les faibles distances de pénétration qui correspondent
aux clusters dense dans des environnements chauds et aux vitesses relativement faibles entre gaz et cluster.
Pour ce cas, le modéle prédit que pour la méme vitesse initiale le temps d’évaporation est plus court lorsque
le cluster devient plus dilué. Pour des clusters dilués et des longueurs de pénétration grandes, on trouve le
contraire. Puisque pour des grands longueurs de pénétration la valeur prédictive du modéle se détériore,
ceci peut étre mis en question. Néanmoins le temps d’évaporation est trouvé étre une faible fonction de la
vitesse relative initiale et une fonction forte de I’écart de température initial. La température initiale
ambiante du gaz a une influence forte dans le régime des températures faibles 750-1500 K, tandis que
I'influence est trés faible au régime des températures fortes. La contamination du gaz ambiant par une
vapeur combustible est trouvée avoir une trés faible influence sur le temps d’évaporation pour des mélanges
riches quand le cluster est introduit dans des environnements fortement convectifs a haute température.
Dans tous les cas, les résultats montrent que la chute de température interne est variable pendant la durée
de vie de la goutte, mais les non uniformités de la température persistent jusqu’a plus du premier tiers du
temps total d’évaporation.

HMT 30:1-1

(A8)
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ANALYSE DER KONVEKTIVEN VERDAMPFUNG VON UNVERDUNNTEN
TROPFENSCHWARMEN

Zusammenfassung—Ein Modell fiir die konvektive Verdampfung von unverdiinnten Tropfenschwarmen
wurde entwickelt. Als kritischer Parameter, der die verschiedenen Verdampfungsarten kontrolliert, wurde
die Eindringtiefe der AuBenstromungin das Schwarmvolumen identifiziert. Ein dynamisches Kriterium, das
zwischen Eindringen und Nicht-Eindringen unterscheidet, wurde entwickelt. Die konvektive Verdampfung
wurde dadurch modelliert, daB eine Reynolds-Zahl-Korrelation zwischen der Abdampfrate mit Kon-
vektion und der Abdampfrate ohne Konvektion benutzt wurde. Andere Gleichungen, die bereits frither
fiir ruhende unverdiinnte Sprithverdampfung entwickeit wurden [1}, wurden hier ebenso benutzt, mit der
Ausnahme, daB ein neues kinetisches Verdampfungsgesetz fiir die Tropfenoberfliche und ein ungleich-
maéfiges inneres Temperaturmodell, welche hier entwickelt wurden, eingesetzt wurden. Es zeigte sich,
dafl das Modell fiir kieine Eindringtiefen, die fir dichte Schwirme in heifler Umgebung und kleine
Relativgeschwindigkeiten zwischen duBerem Gas und Schwarm beobachtet werden, gute Ergebnisse liefert.
Fiir dichte Schwiarme mit kleinen Eindringtiefen, erhilt man aus den Modellrechnungen, daB bei der
gleichen Anfangsgeschwindigkeit die Verdampfungszeit kiirzer wird je verdiinnter der Schwarm ist. Fir
verdiinnte Schwiarme und groBe Eindringtiefen wurde das Gegenteil festgestellt. Da sich die Zuverlssigkeit
des Modelles fiir groBe Eindringtiefen verringert, sind die letzten Trends fragwiirdig. Weiter wurde
gefunden, daB die Verdampfungszeit nur schwach von der anfinglichen Relativgeschwindigkeit, dagegen
stark von der Anfangstemperatur der Tropfen abhidngt. Die Anfangstemperatur des umgebenden Gases
hat im unteren Temperaturbereich (750-1500 K) einen starken EinfluB, im oberen Temperaturbereich war
der EinfluB schwach. Die Verunreinigung des umgebenden Gases durch Kraftstoff-Dampf hat einen sehr
geringen Einfluf auf die Verdampfungszeit fiir reiche Mischungen, wenn der Schwarm in eine stark
konvektive Hochtemperaturumgebung gebracht wird. In allen Fillen zeigten die Ergebnisse, daB die
innere Tropfentemperatur wihrend des Tropfenlebens instationdr war, da aber UngleichméBigkeiten der
Temperatur ldngstens bis ein Drittel der Gesamtverdampfungszeit erhalten blieben.

AHAJIN3 KOHBEKTUBHOTI'O UCMTAPEHUS IIJIOTHBIX CKOITJIEHUN KAIEJDb

Amnorauns—Pa3paGoraHa MOeNlb KOHBEKTHBHOIO MCNAPEHHs MUIOTHBIX CKOTUIEHHH kanenb. Kpurtuuec-
KHil TapaMeTp, XapaKTepH3YHOILIMi Pa3sinyHble PeXHMbI HCHAPEHHA, ONPEAC/ICH KaK PacCTOSHHE IPo-
HUKHOBEHMS BHEILIHEro MnoToka B 00beM ckomleHus. IlonydeH OMHaAMHYecKHH KpUTEpHMi s
HaXOXJCHHS PasJIndMil MeXy ClIy4deM ¢ NPOHNKHOBEHHEM H 6e3 Hero. KOHBEKTHBHOE HCapeHHe MOe-
JIKPOBAJIOCh C HCMOJIb30BAaHHEM 4YMCJIAa PeliHobAca, BBIPAXXAOILEr0 COOTHOIUEHHE MEXIY HHTEHCHB-
HOCTSIMH HCMApeHNs ¢ KOHBeKuHeH M 6e3 Hee. Vcmons3yloTcs ypaBHeHHs, BhIBeJeHHbIC paHee [1] ans
YCTOHYMBOIO PACHBUIHTENLHOTO UCTIAPEHHS, @ TAKKE HOBBIH 3aKOH /U1 KHHETHKH NCMAPEHHs Ha [TOBEPX-
HOCTH KAIlJIM ¥ MOJE/Ib HEOJHOPOAHOH BHELIHEH TeMIIepaTyphl, NPesIoXeHHAs B JaHHOH paborte. [Toka-
3aHO, YTO MOJEb Hanboslee MPUToaHa A8 MaJjlbIX PACCTOAHMHA MPOHULAEMOCTH, KOTOPBIE MOJIYYatoOTCH
[UIs TUIOTHBIX CKOIUICHWH B rops4ell OKpYXalolUeH cpefe M AN HM3KHX OTHOCHTEJIBHBIX CKOPOCTEH
MEXIY HAPYXKHBIMH ra3aMH H CKOMJICHHEM Kamnesib. 18 MIOTHBIX CKOMUIEHHH ¢ MaJlbIMK PAaCCTOSHUAMH
NPOHHLAEMOCTH pPe3yJbTaThi MOOENM MOKA3bIBAIOT, YTO I OJHOM M TOH e HAYaNbHON CKOPOCTH
BpEMsl HCMAapCHUS CTAHOBHTCS MEHbHIE, MO Mepe TOro, Kak CKOIUIEHHE Kamelb CTaHOBHTCA Oonee
WIOTHBIM. /ISl IIOTHBIX CKOIUIGHUH M OOJIBIIMX PAacCTOSHMH NMPOHHUAaeMOocTH Habimoaanock obpaTHoe
ssneHue. [lockonbky g OOBLIMX PAcCTOAHHUIA NPOHHUIAEMOCTH PE3YJIbTAThl PACYETOB MOJYYAXOTCH
MEHEE TOMHBIMH, MOCJIEIHHE 3aKOHOMEPHOCTH SBJIAIOTCA COpHbIMH. Bosee Toro, HaiaeHo, YTO Bpems
ucnapeHus cabo 3aBUCHT OT HavaJbHOW OTHOCHTEJILHOW CKOPOCTH M CHJIBHO 3aBMCHMT OT Ha4aJIbHOTO
nepenana temnepaTypsl. OOHapyXXeHO, YTO Ha4yajibHAas TEMIlEpaTypa OKPYXalOILEro rasa OKasbIBaeT
CHJILHOE BJIMSIHHE TIPH HMU3KOTEMIIEPATYPHOM pexuMe B obiaactu temnepatyp 750-1500 K, B To Bpems
Kak npu 6oJsiee BLICOKUMX TeMIlepaTypax 3TO BIIMsiHHE Oo4eHb Maio. HalineHo, yTo HCKaXeHNs, BHOCHMBbIE
fapaMy TOIUIMBA, CJabo BIMAIOT HAa BPEMs MCMApeHHs B ODOrallleHHBIX CMeCAX, KOTJda CKOIUICHHS
Karesb BBOOATCS B BhICOKOTEMIEPATYPHbI KOHBEKTHBHBIA NoTok. Bo BCex cnyyasx pe3ysibTaTsl MOKa-
3BIBAKOT, YTO BHYTPEHHHH Nepenal TeMMEPATYPbl H3MCHAETCS B TEYCHHWE BPEMEHM XH3HH KalljH, a
HEOAHOPOJHOCTH TEMIEPATYPhI COXPAHSIOTCS B TEUCHHUE MIEPBOA TPETH BPEMEHHU UCTIAPEHMUS.



